
Page 1Page 1

A Guide to Using
NCCS System

Go to Menu

Page 2

Outline
•

Jaguar System Overview
–

Summary of Resources
–

System Software
–

System Hardware
•

Logging into Jaguar
–

Connection Requirements
–

Connection Procedures
–

One-Time Password

(OTP)

Authentication
–

Connection Options
•

Login Nodes vs. Compute Nodes
–

Login Nodes
–

Compute (Batch) Nodes
•

File Systems
–

Basics
–

User’s Directories
–

High Performance Storage System (HPSS)
–

Lustre Filesystem
•

Software Environment
–

Defaults
–

Modules
– module command

•

Compiling
–

System Compilers
–

Parallel Compiling on Jaguar
–

Wrappers and Compiling Tips
–

Available Compilers (Serial compilers)
–

Useful Compiler Flags
•

Running Jobs
–

Introduction
–

Glossary
–

Batch Scripts
–

Submitting Batch Jobs
–

Interactive Batch Jobs
–

PBS Options
–

PBS Environment Variables
–

Monitoring Job Status
–

Job Execution
–

Memory Affinity
–

Threads
–

MPI Task Layout
–

Single-Processor (Serial) Jobs
•

Third-Party Software
•

Lustre Filesystem
−

Lustre Filesystem: A Bigger Picture
−

Lustre Filesystem: Striping on Lustre Filesystem
•

Resources for Users
–

Getting Started
–

Advanced Topics
–

More Information Go to Menu

Page 3Page 3

Jaguar System Overview

Go to Menu

Page 4

Jaguar System Overview: Summary of Resources

Jaguar is a combined system of Cray XT4 and XT5 systems!

Jaguar XT4 XT5 Notes

CPU Type Quad-core 2.1 GHz AMD
Opteron

SSE SIMD FPU (4flops/cycle
=8.4GF peak)

Communication
between nodes Cray SeaStar2+ 9.6 GB/sec

Memory type Dual Channel DDR2 12GB/s peak @ 800MHz;

10GB/s
nominal STREAMs

Floor Space 1400 feet2 4400 feet2

Cooling Technology Air Liquid

Go to Menu

Page 5

Jaguar System Overview: Summary of Resources
Jaguar is a combined system of Cray XT4 and XT5 systems!

Jaguar XT4 XT5 Total

Nodes per blade 4

CPUs per node1 1 2

Cores per node 4 8

Compute nodes2 7,832 18,772

AMD Opteron cores 31,328 150,176 181,504

Memory per core 2 GB/core

System Memory ~61.2 TB ~293.3 TB ~354.5 TB

System Memory ~62 TB ~300 TB ~360 TB

Disk Bandwidth ~44 GB/s ~240 GB/s ~284 GB/s

Disk Space ~750 TB ~10,000 TB ~10,750 TB

Interconnect Bandwidth ~157 TB/s ~374 TB/s ~532 TB/s

Floor Space 1400 feet2 4400 feet2 5800 feet2

Ideal Performance per core3

(4 FLOPs/cycle times 2.1*109 cycles/sec) 8.4 GFLOPS

Overall Ideal Performance ~0.25 PFLOPS ~1.2 PFLOPS ~1.45 PFLOPS

1

In the context of Jaguar CPU is also called a socket.
2

Note that in addition to compute nodes Jaguar also have input/output (I/O) and login service nodes.
3

FLOPs

= FLoating

point OPerations; FLOPS = FLoating

point Operations Per Second
Go to Menu

Page 6

Jaguar System Overview: System Software

•

Operating system is Cray Linux Environment (CLE) 2.1:
–

Compute Nodes –

Compute Node Linux (CNL)

–

Login/Service nodes –

SUSE Linux

•

Compilers
–

C/C++, Fortran

•

MPI implementation
–

Cray MPI based on MPICH

•

High Performance Storage System (HPSS) software
Go to Menu

Page 7

Jaguar System Overview: System Hardware

XT5 partition of Jaguar

Go to Menu

Page 8

Jaguar System Overview: System Hardware

Cray XT4 Blade

Four Compute Nodes per Blade
ONE

AMD quad-core CPU per node

Cray XT5 Blade

Four Compute Nodes per Blade
TWO

AMD quad-core CPU per node

Go to Menu

Page 9

Jaguar System Overview: System Hardware

NUMA Node 0

NUMA Node 1

AMD
Opteron

Processor

NUMA Node
D
I
M
M
S

Go to Menu

Page 10

Jaguar System Overview: System Hardware

•

XT System Torus Architecture

Go to Menu

Page 11

Jaguar System Overview: System Hardware

Cache Hierarchy
Quad-core AMD Opteron

CPU

Go to Menu

Page 12Page 12

Logging into Jaguar

Go to Menu

Page 13

Logging into Jaguar: Connection Requirements

•

The only supported remote client on NCCS systems is a secure shell (SSH) client.
•

The only supported authentication method is one-time passwords (OTP).

•

UNIX-based operating systems generally have an SSH client built in.
•

Windows users may obtain free clients online, such as PuTTY.

Any SSH client:

•

must support the SSH-2 protocol (supported by all modern SSH clients).
•

must allow keyboard-interactive authentication to access NICS systems. For UNIX-

based SSH clients, the following line should be in either the default ssh_config

file or
your $HOME/.ssh/config

file:

PreferredAuthentications keyboard-interactive,password

The line may also contain other authentication methods, so long as keyboard-

interactive is included.

Go to Menu

Page 14

Logging into Jaguar: Connection Procedures

One more time: Jaguar is a combined system of Cray XT4 and XT5 systems!

To connect to Jaguar from a UNIX-based system type the following in your terminal:

ssh userid@jaguar.ccs.ornl.gov -

Cray XT4
ssh userid@jaguarpf.ccs.ornl.gov -

Cray XT5

Enter PASSCODE: PIN + 6 digits from RSA®

SecurID

NCCS RSA Key Fingerprints:

jaguar 0d:c9:db:37:55:da:41:26:55:4a:80:bb:71:55:dd:01
jaguarpf 80:58:21:03:96:47:1a:15:2c:25:d3:ca:e6:04:e8:a7

Go to Menu

Page 15

Logging into Jaguar: One-Time Password

(OTP) Authentication
RSA®

SecurID

-

Quick Start Guide

All NCCS systems currently use OTPs

as their authentication method. To login to NCCS systems, an RSA SecurID

key fob is required!

Activating your SecurID

key fob:
1.

Return the completed NICS token activation form to the address provided on the form. Once the form is received
by NCCS, the RSA OTP token will be enabled, and you will be notified by email.

2.

Initiate an SSH connection to home.ccs.ornl.gov
3.

When prompted for a PASSCODE, enter the token code shown on the fob. You will be asked if you are ready to
set your PIN. Answer with “Y.”

4.

You will then be prompted to enter a PIN. Enter a 4-

to 6-digit number you can remember. Reenter your PIN
when prompted.

5.

You will be prompted to enter your full PASSCODE. To do so, wait

until the next token code appears on your fob
and enter your PASSCODE, which is now your PIN + the 6-digit token code displayed on your fob. For example,
if the pin was 1111 and the token code was 223344, then the full

PASSCODE would be 1111223344.
6.

Your PIN is now set, and your fob is activated and ready for use. Log on using the procedure outlined in

Token code

Time bars

Old design
New design

Go to Menu

http://home.ccs.ornl.gov/

Page 16

Logging into Jaguar: Connection Options

Automatic forwarding of the X11 display to a remote computer is highly recommended with the use of SSH and a
local X server. To set up an automatic X11 tunneling with SSH, do one of the following:

1. Command line: Invoke ssh

with the -X option:

ssh

-X userid@jaguarpf.ccs.ornl.gov

Note 1: use of the -x (lowercase x) option will disable X11 forwarding
Note 2: use of the -Y option (instead of -X) is necessary on some systems to enable "trusted" X11 forwarding

2.

Configuration file: Edit (or create) the .ssh/config

file to have the following line in it:

ForwardX11 yes

3.

Graphical Menu: Many SSH clients have a menu to change the configuration settings.
PuTTY: check the box next to Connection --> SSH --> X11 --> Enable X11 Forwarding
Note 1: Unix-like systems, with the exception of Mac OS-X, offer native X11 support. Apple does provide an

implementation for OS-X, available from the Apple website.
Note 2: For Windows systems you can also use free Xming

software.
Note 3: PuTTY

stores configuration settings for each server separately. If, for example, you enable X11
Forwarding for jaguar.ccs.ornl.gov, it will not change the settings for jaguarpf.ccs.ornl.gov

X11 Tunneling

Go to Menu

Page 17Page 17

Login Nodes
vs.

Compute Nodes

Go to Menu

Page 18

Login Nodes

•

When you login to Jaguar, you will be placed on a “login node”

•

Login nodes are used for basic tasks such as file editing, code
compilation, data backup, and job submission

•

These nodes provide a full SUSE Linux environment, complete with

compilers, tools, and libraries

•

The login nodes should not be used to run production jobs.
Production work should be performed on the systems compute
resources.

•

Serial jobs (post-processing, etc) may be run on the compute nodes
as long as they are statically linked (will be discussed later)

Go to Menu

Page 19

Compute (Batch) Nodes

•

All MPI/OpenMP

user applications execute on batch or compute
nodes

•

Batch nodes provide limited Linux environment –

Compute Node
Linux (CNL)

•

Compute nodes can only see the Lustre scratch directories

•

Access to compute resources is managed by the Portable Batch
System (PBS)

•

Job scheduling is handled by Moab, which interacts with PBS and
the XT system software.

Go to Menu

Page 20Page 20

File Systems

Go to Menu

Page 21

File Systems: Basics

•

The Network File Service (NFS) server contains user's home directories,
project directories, and software directories .

•

Compute nodes can only see the local Lustre work space
–

The NFS-mounted home, project, and software directories are not
accessible to the compute nodes.

–

The shared Lustre area, /lustre/spider, is also not accessible to
the compute nodes.

•

Executables must be executed from within the local Lustre work space:
– /tmp/work/$USER (XT4 and XT5)

•

Batch jobs can be submitted from the home or work space. If submitted
from a user’s home area, the user should cd

into the local Lustre work
space directory prior to running the executable through aprun.

•

Input must reside in the local Lustre work space
•

Output must also be sent to the local Lustre file system
Go to Menu

Page 22

File Systems: User’s Directories

•

Home directory

-

NFS Filesystem
/ccs/home/$USER

•

Work directory/Scratch space

-

Lustre Filesystem
/tmp/work/$USER (XT4 and XT5)

•

Project directory

-

NFS Filesystem
/ccs/proj/projectid

•

HPSS storage

Each user is provided the following space resources:

Go to Menu

Page 23

File Systems: Home Directory

•

Each user is provided a home directory to store frequently used
items such as source code, binaries, and scripts. Home directories
are located in a Network File Service (NFS) that is accessible from
all NCCS resources.

•

Home directory -

NFS Filesystem

Location: /ccs/home/$USER

•

Accessible from all NCCS systems
•

NFS does not provide the highest performance

•

Default storage limit of 2 GB
•

To find your quota and usage in NFS, use the quota command

•

Regularly backed up
Go to Menu

Page 24

File Systems: Work Directory

•

Local work space is available on each NCCS high-performance
computing (HPC) system for temporary files and for staging large

 files from and to the High Performance Storage System (HPSS). To
 ensure adequate work space is available for user jobs, a script that

finds and deletes old files runs on the system nightly. Thus, it

is
critical to archive files from the scratch area as soon as possible.

•

Work directory/Scratch space -

Lustre Filesystem

Location: /tmp/work/$USER (both XT4 and XT5)
Location: /lustre/scr144/$USER (XT4 only)

•

Accessible from all NCCS systems
•

The path /tmp/work/$USER is a symbolic link and points to a
different file system on each supercomputer.

•

Not backed up!
Go to Menu

Page 25

File Systems: Project Directory

•

Each project is provided a directory shared by the project to
store data such as source code, binaries, and scripts. Project
directories are located in a Network File Service (NFS) that is
accessible from all NCCS resources.

•

Project directory -

NFS Filesystem

Location: /ccs/proj/projectid

•

Accessible from all NCCS systems
•

Default storage limit of 5 GB

•

By default, project directories are created with 770
permissions and the project ID group as the group owner.

Go to Menu

Page 26

File Systems: Node-local System

Node-local Filesystem

•

Location: /tmp

•

The path /tmp/work/$USER is available on all NCCS HPC
systems, but it points to a different file system on each
supercomputer. Each one is local to that respective supercomputer.

•

Do not create files directly in the /tmp directory!

• /tmp/work/$USER is actually a symbolic link to a completely
different file system (like /scratch/lustre/$USER). The
/tmp file system itself is quite small, and when /tmp fills up, the
system problems result.

Go to Menu

Page 27

File Systems: High Performance Storage System (HPSS)

•

Each user of an NCCS system is provided an account on the HPSS. The user’s
login name for HPSS is the same as for all other NCCS systems. Authorization to
HPSS is by means of the user’s SecurID

token.

•

HPSS is an archival Back-up system which has two types of storage technology:
–

Disk –

“on-line”

for frequently/recently accessed files
–

Tape –

“off-line”

for very large or infrequently accessed files

•

The hsi utility provides the ability to access and transfer data to and

from the
NCCS HPSS for both disk and tape file systems. Issuing the command hsi will
start HSI in interactive mode.

•

Information on HSI may be found from the NCCS systems through the command
– hsi help

•

Below is an example of storing and getting a bunch of files in a

directory using tar
and HSI. HSI can read from standard input and write to standard output:
– tar cvf - . | hsi put - : <filename.tar>
– hsi get - : <filename.tar> | tar xvf -

•

Also “htar”

command –

works like Unix “tar”
Go to Menu

Page 28

File Systems: Lustre Filesystem and liblustre

•

Parallel, object-based filesystem

that aggregates a number of storage
servers together to form a single coherent file system that can be accessed
by a client system. The Lustre file system is made up of an underlying set
of file systems called Object Storage Targets (OST's), which are essentially
a set of parallel IO servers.

•

When running on compute node, only Lustre filesystem

is accesible
–

Exception: stdin, stdout

and stderr

are mapped through aprun
•

Best way to do I/O on compute nodes without going back out through
aprun (thereby throttling I/O badly): using liblustre

•

Lustre module is currently loaded by default
–

Linked in when you build executable
•

Do not unload Lustre module.
•

Use the ftn, cc, and CC wrappers to compile

Go to Menu

Page 29Page 29

Software Environment

Go to Menu

Page 30

Software Environment: Defaults

•

Default software environment automatically loaded when user
logs in (Oct. 2009):
–

PGI 7.2.5

–

Libsci

10.3.1
–

Etc.

•

What if…
–

Not all software necessary for your work is automatically
loaded

–

You need another version of loaded software
–

Default software incompatible with your work?

Go to Menu

Page 31

Software Environment: Modules

•

Software is loaded, unloaded or swapped using
modules.

•

Use of modules allows software, libraries, paths, etc.
to be cleanly entered into and removed from your
programming environment.

•

Conflicts are detected and module loads that would
cause conflicts are not allowed.

Go to Menu

Page 32

Software Environment: module command

Loading Commands Informational Commands

• module [load||unload]
my_module
–

Loads/Unloads module
my_module

–

e.g., module load
subversion

• module swap module#1
module#2
–

Replaces module#1 with
module#2

–

e.g., module swap
PrgEnv-pgi PrgEnv-gnu

• module help my_module
–

Lists available commands and
usage

• module show my_module
–

Displays the actions upon loading
my_module

• module list
–

Lists all loaded modules
• module avail [name]

–

Lists all modules [beginning with
name]

–

e.g., module avail gcc
Go to Menu

Page 33

Software Environment: module list
username@jaguarpf-login1:/> module list
Currently Loaded Modulefiles:
1) modules/3.1.6
2) DefApps
3) torque/2.3.2-snap.200807092141
4) moab/5.2.4
5) xtpe-quadcore
6) MySQL/5.0.45
7) xt-service/2.1.50HD_PS08
8) xt-libc/2.1.50HD_PS08
9) xt-os/2.1.50HD_PS08
10) xt-boot/2.1.50HD_PS08
11) xt-lustre-ss/2.1.50HD.PS08.lus.1.6.5.steve.8119_1.6.5
12) xtpe-target-cnl
13) Base-opts/2.1.50HD_PS08
14) pgi/7.2.5
15) fftw/3.1.1
16) xt-libsci/10.3.1
17) xt-mpt/3.1.0
18) xt-pe/2.1.50HD_PS08
19) xt-asyncpe/2.3
20) PrgEnv-pgi/2.1.50HD_PS08 Go to Menu

Page 34

Software Environment: module show pgi
username@jaguarpf-login1:/> module show pgi

/opt/modulefiles/pgi/7.2.5:

setenv PGI_VERSION 7.2
setenv PGI_VERS_STR 7.2.5
setenv PGI_PATH /opt/pgi/7.2.5
setenv PGI /opt/pgi/7.2.5
prepend-path LM_LICENSE_FILE /opt/pgi/7.2.5/license.dat
prepend-path PATH /opt/pgi/7.2.5/linux86-64/7.2/bin
prepend-path MANPATH /opt/pgi/7.2.5/linux86-64/7.2/man
prepend-path LD_LIBRARY_PATH /opt/pgi/7.2.5/linux86-64/7.2/lib
prepend-path LD_LIBRARY_PATH /opt/pgi/7.2.5/linux86-64/7.2/libso

Go to Menu

Page 35Page 35

Compiling

Go to Menu

Page 36

Compiling: System Compilers

The following compilers should be used to build codes on Jaguar!
Use these

compilers!

Language Compiler

C cc

C++ CC

Fortran 77, 90 and 95 ftn

Note that cc, CC and ftn

are actually the Cray XT Series wrappers for
invoking the PGI, GNU or Pathscale

compilers (discussed later…)

Go to Menu

Page 37

Compiling: Parallel Compiling on Jaguar

•

Jaguar has two kinds of nodes:
–

Compute Nodes running the CNL OS
–

Service and login nodes running Linux

•

To build a code for the compute nodes, you should use the Cray wrappers
cc, CC, and ftn. The wrappers will call the appropriate compiler which
will use the appropriate header files and link against the appropriate
libraries. Use of wrappers is crucial for building the parallel codes on Cray.

•

We highly recommend that the cc,

CC, and

ftn wrappers be used when
building for the compute nodes! Both parallel and serial codes!

•

To build a code for the Linux service nodes, you should call the

compilers
directly.

•

We strongly suggest that you don’t call the compilers directly if you are
building code to run on the compute nodes!

•

No long serial jobs should be run on service nodes, use compute nodes
instead! Go to Menu

Page 38

Compiling: Wrappers and Compiling Tips

•

Why to use wrappers to build (compile and link) the code:
–

Automatically point to correct compiler based on modules
loaded

–

Wrappers automatically find and include paths and libraries
of loaded modules (e.g., mpi, libsci)

•

Use same makefile

for all compilers*

•

Calling base compilers directly (e.g., pgf90) results in serial
code that runs only on login nodes
–

Not what you want! Use wrapper instead and run on
compute nodes

–

Discourteous to other users to do production work on login
nodes

* Except compiler-specific flags Go to Menu

Page 39

Compiling: Available Compilers (Serial compilers)
•

Available compilers:

–

Portland Croup (PGI). Module name: PrgEnv-pgi
pgcc
pgCC
pgf90/pgf95
pgf77

–

GNU. Module name: PrgEnv-gnu
gcc
g++
gfortran

–

Pathscale. Module name: PrgEnv-pathscale
pathcc
pathCC
path90/pathf95(only available if gcc/4.2.1 or higher is

loaded)

–

Cray compilers. Module name: PrgEnv-cray
Go to Menu

Page 40

Compiling: Default Compilers
•

Default compiler is PGI. The list of all packages is obtained by
– module avail PrgEnv

•

To use the Cray wrappers with other compilers the programming
environment modules need to be swapped, i.e.
– module swap PrgEnv-pgi PrgEnv-gnu
– module swap PrgEnv-pgi PrgEnv-pathscale

•

To just use the GNU/Pathscale

compilers directly load the
GNU/pathscale

module you want:

– module load pathscale/3.2

•

It is possible to use the GNU compiler versions directly without
 loading the Cray Programming Environments, but note that the Cray

wrappers will probably not work as expected if you do that.

Go to Menu

Page 41

Compiling: Useful Compiler Flags (PGI)

Optimization:
Flag Comments
-fast Equivalent to -Mvect=sse -Mscalarsse

-Mcache_align -Mflushz

-fastsse Same as -fast
-Mcache_align Makes certain that arrays are on cache line boundaries
-Munroll=c:n Unrolls loops n times (e.g., n=4)
-Mipa=fast,inline Enables interprocedural

analysis (IPA) and inlining,
benefits for C++ and Fortran

-Mconcur Automatic parallelization

Go to Menu

Page 42

Compiling: Useful Compiler Flags (GNU)

Flag Comments
-O2 -ffast-math
–fomit-frame-
pointer
-mfpmath=sse

Recommended first compile/run

-mfpmath=sse Use scalar floating point instructions present in SSE
instruction set

-finline-
functions

Inline simple functions (turned on automatically by -O3)

-funroll-loops
--param max-
unroll-times=n

Unrolls loops n times (e.g., n=4)

Optimization:

Go to Menu

Page 43

Flag Comments
-O3 -OPT:Ofast Recommended first compile/run
-OPT:Ofast Maximizes performance; generally safe but may impact

floating point correctness. Equivalent to –
OPT:ro=2:Olimit=0:div_split=ON:alias=
typed

-Ofast Equivalent to -O3 -ipa -OPT:Ofast -fno-
math-errno

-ipa Enables interprocedural

analysis (IPA) and inlining
-apo Enables autoparallelization

pathopt2 utility can help identify compiler options that give best optimization

Compiling: Useful Compiler Flags (Pathscale)

Optimization:

Go to Menu

Page 44

Compiling: Useful Compiler Flags (PGI)

General

Flag Comments
-mp=nonuma Compile multithreaded

code using OpenMP

directives

Debugging

Flag Comments
-g For debugging

symbols; put first
-Ktrap=fp Trap floating point

exceptions
-Mchkptr Checks for unintended

dereferencing of null
pointers

Go to Menu

Page 45

Compiling: Useful Compiler Flags (GNU)

Flag Comment
-fopenmp Compile multithreaded

code using OpenMP

directives

Flag Comment
-g For debugging

symbols; put first
-finstrument-
functions

For using CrayPat

-fbounds-
check

Enable generation
of runtime checks
for array subscripts

General Debugging

Go to Menu

Page 46

Compiling: Useful Compiler Flags (Pathscale)

Flag Comments
-mp Compile multithreaded

code using OpenMP

directives (NOTE:
limited support for
C++ at this time)

Flag Comments
-g For debugging symbols;

put first
-LNO:simd_
verbose=on

Get diagnostics

-trapuv Initialize variables to
NaN

–

useful for
finding uninitialized
variables

-zerouv Initialize variables to 0

General Debugging

Go to Menu

Page 47Page 47

Running Jobs

Go to Menu

Page 48

Running Jobs: Introduction

•

When you log into Jaguar, you are placed on one of the login nodes.

•

Login nodes should be used for basic tasks such as file editing,

code
compilation, data backup, and job submission.

•

The login nodes should not be used to run production jobs. Production
work should be performed on the system’s compute resources.

•

On Jaguar, access to compute resources is managed by the Portable Batch
System (PBS). Job scheduling and queue management is handled by Moab
and Torque which interact with PBS and the XT system software.

•

Users either submit the job scripts for batch jobs, or submit a request for
interactive job.

•

The following pages provide information for getting started with

the batch
facilities of PBS with Moab as well as basic job execution.

Go to Menu

Page 49

Running Jobs: Glossary

•

Portable Batch System

(or simply PBS) is the computer software
that performs job scheduling. Its primary task is to allocate
computational tasks, i.e., batch jobs, among the available computing
resources. PBS is supported as a job scheduler mechanism by Moab.

•

Batch jobs

are set up so they can be run to completion without
human interaction, so all input data is preselected through scripts or
command-line parameters. This is in contrast to "online" or
interactive

programs which prompt the user for such input.

•

TORQUE

is an open source resource manager providing control
over batch jobs

and distributed compute nodes. It is a community

effort based on the original *PBS project.

Go to Menu

Page 50

Running Jobs: Batch Scripts

•

Batch scripts can be used to run a set of commands on a
systems compute partition.

•

The batch script is a shell script containing PBS flags and
commands to be interpreted by a shell.

•

Batch scripts are submitted to the batch manager, PBS,
where they are parsed. Based on the parsed data, PBS
places the script in the queue as a job.

•

Once the job makes its way through the queue, the script
will be executed on the head node of the allocated
resources.

Go to Menu

Page 51

Running Jobs: Example Batch Script

1: #!/bin/bash
2: #PBS -A XXXYYY
3: #PBS -N test
4: #PBS -j oe
5: #PBS -l walltime=1:00:00,size=256
6:
7: cd $PBS_O_WORKDIR
8: date
9: aprun -n 256 ./a.out

This batch script can be broken down into the following sections:
•

Shell interpreter
•

Line 1
•

Can be used to specify an interpreting shell.
•

PBS commands
•

The PBS options will be read and used by PBS upon
submission.

•

Lines 2–5
•

2: The job will be charged to the XXXYYY project.
•

3: The job will be named “test.”
•

4: The jobs standard output and error will be combined.
•

5: The job will request 256 cores for 1 hour.
•

Please see the PBS Options page for more options.
•

Shell commands
•

Once the requested resources have been allocated, the shell
commands will be executed on the allocated nodes head
node.

•

Lines 6–9
•

6: This line is left blank, so it will be ignored.
•

7: This command will change directory into the script's
submission directory. We assume here that the job was
submitted from a directory in /lustre/scratch/.

•

8: This command will run the date command.
•

9: This command will run the executable a.out

on 256
cores with a.out. Go to Menu

Page 52

Running Jobs: Submitting Batch Jobs -

qsub

•

All job resource management handled by Torque.

•

Batch scripts can be submitted for execution using the
qsub command.

•

For example, the following will submit the batch script
named test.pbs:

qsub test.pbs

•

If successfully submitted, a PBS job ID will be returned.
This ID can be used to track the job.

Go to Menu

Page 53

Running Jobs: Interactive Batch Jobs

•

Batch scripts are useful for submitting a group of commands, allowing them to run
through the queue, then viewing the results. It is also often useful to run a job
interactively. However, users are not allowed to directly run on

compute resources
from the login module. Instead, users must use a batch-interactive PBS job. This is
done by using the -I option to qsub.

•

For interactive batch jobs, PBS options are passed through qsub on the command line:

qsub -I -A XXXYYY -q debug -V -l size=16,walltime=1:00:00

This request will…
-I Start an interactive session
-A Charge to the “XXXYYY”

project
-q debug Run in the debug queue
-V Import the submitting users environment
-l size=16,walltime=1:00:00 Request 16 compute cores for one hour

Go to Menu

Page 54

Running Jobs: PBS Options

Option Use Description

A #PBS -A <account>

Causes the job time to be charged to <account>. The account string
XXXYYY is typically composed of three letters followed by
three digits and optionally followed by a subproject identifier.

The utility showusage can be used to list your valid assigned
project ID(s). This is the only option required by all jobs.

l #PBS -l size=<cores> Maximum number of compute cores. Must request an entire node
(multiples of 8).

#PBS -l
walltime=<time>

Maximum wall-clock time. <time>

is in the format HH:MM:SS.
Default is 45 minutes.

Necessary PBS options:

Go to Menu

Page 55

Running Jobs: PBS Options (cont…)
Commonly used, but not necessary PBS Options:

Option Use Description

l #PBS -l feature=<target>

Run only on the specified target. Currently the available target

is XT5 with 1 or 2
GB of memory per node. The default is to run on the first available. It is
recommended to use the default. The other option is to specify "2gbpercore" to
run on 16 GB nodes only.

o #PBS -o <name>
Writes standard output to <name>

instead of <job script>.o$PBS_JOBID.
$PBS_JOBID is an environment variable created by PBS that contains the PBS
job identifier.

e #PBS -e <name> Writes standard error to <name>

instead of <job script>.e$PBS_JOBID.

j #PBS -j {oe,eo} Combines standard output and standard error into the standard error file (eo) or
the standard out file (oe).

m #PBS -m a Sends email to the submitter when the job aborts.

#PBS -m b Sends email to the submitter when the job begins.

#PBS -m e Sends email to the submitter when the job ends.

M #PBS -M <address> Specifies email address to use for -m

options.

N #PBS -N <name> Sets the job name to <name>

instead of the name of the job script.

S #PBS -S <shell> Sets the shell to interpret the job script.

q #PBS -q <queue> Directs the job to the specified queue.This

option is not required to run in the
general production queue.

V #PBS -V Exports all environment variables from the submitting shell into

the batch shell.

Go to Menu

Page 56

Running Jobs: PBS Environment Variables

• PBS_O_WORKDIR
–

PBS sets the environment variable PBS_O_WORKDIR to the directory

where
the batch job was submitted.

–

By default, a job starts in your home directory.
–

Include the following command in your script if you want it to start in the
submission directory:

cd $PBS_O_WORKDIR

• PBS_JOBID
–

PBS sets the environment variable PBS_JOBID to the job's ID.
–

A common use for PBS_JOBID is to append the job's ID to the standard output
and error file(s), such as the following:

PBS -o scriptname.o$PBS_JOBID

• PBS_NNODES
–

PBS sets the environment variable PBS_NNODES to the number of cores
requested. This means that number of nodes requested on a 8-core architecture
would be $PBS_NNODES/8. Go to Menu

Page 57

Running Jobs: Monitoring Job Status -

qstat

PBS and Moab provide multiple tools to view queue, system, and job statuses.
Command: qstat
Use qstat -a to check the status of submitted jobs:
nid00004: NICS

Req'd Req'd Elap
Job ID Username Queue Jobname SessID NDS Tasks Memory Time S Time
------ -------- ----- ------- ------ --- ----- ------ ----- - -----
29668 user1 batch job2 21909 1 256 -- 08:00 R 02:28
29894 user2 batch run128 -- 1 128 -- 02:30 Q -–
29895 user3 batch STDIN 15921 1 1 -- 01:00 R 00:10
29896 user2 batch jobL 21988 1 2048 -- 01:00 R 00:09
29897 user4 debug STDIN 22367 1 2 -- 00:30 R 00:06
29898 user1 batch job1 25188 1 1 -- 01:10 C 00:00

Job ID PBS assigned job ID.
Username Submitting user’s user ID.
Queue Queue

into which the job has been submitted.
Jobname PBS job name. This is given by the PBS -n option in

the PBS batch script. Or, if the -n option is not used,
PBS will use the name of the batch script.

SessID Associated session ID.
NDS PBS node count. Not accurate; will be one.
Tasks Number of cores requested by the job’s -size option.
Req’d Memory Job’s requested memory.
Req’d Time Job’s given wall time.
S Job’s current status. See the status listings below.
Elap Time Job’s time spent in a running status. If a job is not currently

or has not been in a run state, the field will be blank.

Status Meaning
Value

E

Exiting after having run
H Held
Q

Queued; eligible to run
R

Running
S

Suspended
T

Being moved to new location
W

Waiting for its execution time
C

Recently completed (within the
last 5 minutes)

Go to Menu

Page 58

Running Jobs: showq, checkjob

Command : showq
The Moab utility showq gives a more detailed description of the queue and displays it
in the following states:
Active These jobs are currently running.
Eligible These jobs are currently queued awaiting resources. A user is allowed five jobs in

the eligible state.
Blocked These jobs are currently queued but are not eligible to run. Common reasons for

jobs in this state are jobs on hold, the owning user currently having five jobs in the
eligible state, and running jobs in the longsmall

queue.

Command : checkjob
The Moab utility checkjob can be used to view details of a job in the queue.
For example, if job 736 is a job currently in the queue in a blocked state, the following can be
used to view why the job is in a blocked state:
checkjob 736 The return may contain a line similar to the following:
BlockMsg: job 736 violates idle HARD MAXJOB limit of 2 for

user (Req: 1 In Use: 2)
This line indicates the job is in the blocked state because the owning user has reached the
limit of two jobs currently in the eligible state.

Go to Menu

Page 59

Running Jobs: showstart, showbf, xtshowcabs

Command : showstart
The Moab utility showstart gives an estimate of when the job will start.
showstart 100315
job 100315 requires 16384 procs for 00:40:00
Estimated Rsv based start in 15:26:41 on Fri Sep 26 23:41:12
Estimated Rsv based completion in 16:06:41 on Sat Sep 27 00:21:12
Since the start time may change dramatically as new jobs with higher priority are
submitted, so you need to periodically rerun the command.

Command : showbf
The Moab utility showbf gives the current backfill. This can help to build a job which
can be backfilled immediately. As such, it is primarily useful for small jobs.

Command : xtshowcabs
The utility xtshowcabs can be used to see what jobs are currently running and which
nodes they are running on.

Go to Menu

Page 60

Running Jobs: Job Execution -

aprun

•

By default, commands will be executed on the job’s
associated service node.

•

The aprun command is used to execute a job on one
or more compute nodes.

•

The XT’s layout should be kept in mind when
running a job using aprun. The XT5 partition
currently contains two quad-core processors (a total
of 8 cores) per compute node. While the XT4
partition currently contains one quad-core processor
(a total of 4 cores) per compute node.

•

The PBS size option requests compute cores.
Go to Menu

Page 61

Running Jobs: Job Execution –

Service Node

•

The PBS script is executed on the aprun

node (or
login node for interactive jobs).

•

If executables are called directly (eg ./a.out), they will
be run serially on the service node. This may be
useful for records keeping, staging data, etc.

•

Please run any memory-

or computationally-intensive
programs using aprun, otherwise it bogs down the
node, and may cause system problems.

•

You may run non-MPI (serial) programs on a
compute node using aprun (discussed later).

Go to Menu

Page 62

Running Jobs: Basic aprun options

Option Description
-D Debug (shows the layout aprun will use)

-n Number of MPI tasks.
Note: If you do not specify the number of tasks to aprun, the system will default to 1.

-N

Number of tasks per Node.

(XT5: 1 –

8) and (XT4: 1 –

4)
NOTE: Recall that the XT5 has two Opterons per compute node. On the XT5, to place one task per
quad-core Opteron, use -S 1 (not -N 1 as on the XT4). On the XT4, because there is only one Opteron
per node, the -S

1 and -N1 will result in the same layout.

-m Memory required per task
A maximum of 2,000 MB per core; 2,100 MB will allocate two cores

for the task

-d

Number of threads per MPI task.
Note: As of CLE 2.1, this option is very important. If you specify OMP_NUM_THREADS but do not
give a -d option, aprun will allocate your threads to a single core. You

must use
OMP_NUM_THREADS to specify the number of threads per MPI task, and you must use -d to tell
aprun how to place those threads.

-S Number of PEs to allocate per NUMA node.
-ss Strict memory containment per NUMA node.

Go to Menu

Page 63

Running Jobs: XT5 example

aprun –n 16 ./a.out will run a.out

across 16 cores. This requires two compute
nodes. The MPI task layout would be as follows:

Compute Node 1

Opteron 0 Opteron 1

Core 0 Core 1 Core 2 Core 3 Core 0 Core 1 Core 2 Core 3

0 1 2 3 4 5 6 7

Compute Node 2

Opteron 0 Opteron 1

Core 0 Core 1 Core 2 Core 3 Core 0 Core 1 Core 2 Core 3

8 9 10 11 12 13 14 15

The following will place tasks in a
round robin fashion.
> setenv MPICH_RANK_REORDER_METHOD 0
> aprun -n 16 a.out
Rank 0, Node 1, Opteron 0, Core 0
Rank 1, Node 2, Opteron 0, Core 0
Rank 2, Node 1, Opteron 0, Core 1
Rank 3, Node 2, Opteron 0, Core 1
Rank 4, Node 1, Opteron 0, Core 2
Rank 5, Node 2, Opteron 0, Core 2
Rank 6, Node 1, Opteron 0, Core 3
Rank 7, Node 2, Opteron 0, Core 3
Rank 8, Node 1, Opteron 1, Core 0
Rank 9, Node 2, Opteron 1, Core 0
Rank 10, Node 1, Opteron 1, Core 1
Rank 11, Node 2, Opteron 1, Core 1
Rank 12, Node 1, Opteron 1, Core 2
Rank 13, Node 2, Opteron 1, Core 2
Rank 14, Node 1, Opteron 1, Core 3
Rank 15, Node 2, Opteron 1, Core 3

Go to Menu

Page 64

Running Jobs: XT4 example

aprun -n8 a.out will run the MPI executable a.out

on a total of eight cores, four cores on
two compute nodes. The MPI tasks will be allocated in the following sequential fashion:

Compute Node 1

Opteron 0

Core 0 Core 1 Core 2 Core 3

0 1 2 3

The following will place tasks in a
round robin fashion.
> setenv MPICH_RANK_REORDER_METHOD 0
> aprun -n 8 a.out
Rank 0, Node 1, Opteron 0, Core 0
Rank 1, Node 2, Opteron 0, Core 0
Rank 2, Node 1, Opteron 0, Core 1
Rank 3, Node 2, Opteron 0, Core 1
Rank 4, Node 1, Opteron 0, Core 2
Rank 5, Node 2, Opteron 0, Core 2
Rank 6, Node 1, Opteron 0, Core 3
Rank 7, Node 2, Opteron 0, Core 3

Compute Node 2

Opteron 0

Core 0 Core 1 Core 2 Core 3

0 1 2 3

Go to Menu

Page 65

Running Jobs: Memory Affinity
•

Each Opteron

Quad-core CPU on a node and its memory is organized into a NUMA node.
•

Memory Affinity -

each XT5 (XT4) node contains two (one) NUMA nodes.
•

Applications may use resources from one or both NUMA nodes. The following aprun
options allow control of application NUMA node use.

-S pes_per_numa_node

Number of PEs

to allocate per NUMA node, pes_per_numa_node can be 1, 2, 3, or 4.
-ss

is the option for strict memory containment per NUMA node.
• -ss option: The default is to allow remote NUMA node memory access.

This option prevents
memory access of the remote NUMA node. Because the XT4 has only one NUMA node per
node, this option does not apply to the XT4.

XT5 Example:
The following will run a.out

on 4 cores,
one core per NUMA node.

aprun -n 4 -S 1 a.out

Rank 0, Node 0, Opteron 0, Core 0
Rank 1, Node 0, Opteron 1, Core 0
Rank 2, Node 1, Opteron 0, Core 0
Rank 3, Node 1, Opteron 1, Core 0

XT4 Example:
The following will run a.out

on 4 cores,
all will be on one NUMA node.

aprun -n 4 -S 4 a.out

Rank 0, Node 0, Opteron 0, Core 0
Rank 1, Node 0, Opteron 0, Core 1
Rank 2, Node 0, Opteron 0, Core 2
Rank 3, Node 0, Opteron 0, Core 3 Go to Menu

Page 66

Running Jobs: Threads

•

The system supports threaded programming within a compute node.

•

On the XT5, threads may span both Opterons

within a single
compute node, but cannot span compute nodes.

•

Users have a great deal of flexibility in thread placement. Several
examples are shown below.

•

Note: Under CNL 2.1, threaded codes must use the

aprun -d depth option

The -d option specifies the number of threads per task. Without the
option all threads will be started on the same core. Under previous
CNL versions the option was not required. The number of cores
used is calculated by multiplying the value of -d by the value of -n.

•

Focus of this discussion will be OpenMP

threads
Go to Menu

Page 67

Running Jobs: Threads –

XT5 Example 1
These examples are written for bash. If using csh/tcsh, you should change the
export OMP_NUM_THREADS=x lines to setenv OMP_NUM_THREADS x

•

Example 1: Launch 2 MPI tasks, each with 8 threads (this requests 2 compute
nodes and requires a size request of 16):

export OMP_NUM_THREADS=8
> aprun -n2 -d8 a.out
Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 0, Thread 2, Node 0, Opteron 0, Core 2 <-- slave
Rank 0, Thread 3, Node 0, Opteron 0, Core 3 <-- slave
Rank 0, Thread 4, Node 0, Opteron 1, Core 0 <-- slave
Rank 0, Thread 5, Node 0, Opteron 1, Core 1 <-- slave
Rank 0, Thread 6, Node 0, Opteron 1, Core 2 <-- slave
Rank 0, Thread 7, Node 0, Opteron 1, Core 3 <-- slave
Rank 1, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
Rank 1, Thread 1, Node 1, Opteron 0, Core 1 <-- slave
Rank 1, Thread 2, Node 1, Opteron 0, Core 2 <-- slave
Rank 1, Thread 3, Node 1, Opteron 0, Core 3 <-- slave
Rank 1, Thread 4, Node 1, Opteron 1, Core 0 <-- slave
Rank 1, Thread 5, Node 1, Opteron 1, Core 1 <-- slave
Rank 1, Thread 6, Node 1, Opteron 1, Core 2 <-- slave
Rank 1, Thread 7, Node 1, Opteron 1, Core 3 <-- slave Go to Menu

Page 68

Running Jobs: Threads –

XT5 Example 2

•

Example 2: Launch 4 MPI tasks, each with 4 threads. . Place 1 MPI task per
Opteron

(this requests 2 compute nodes and requires a size request of 16):

export OMP_NUM_THREADS=4
> aprun -n4 -d4 -S1 a.out
Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 0, Thread 2, Node 0, Opteron 0, Core 2 <-- slave
Rank 0, Thread 3, Node 0, Opteron 0, Core 3 <-- slave
Rank 1, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 1, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 1, Thread 2, Node 0, Opteron 0, Core 2 <-- slave
Rank 1, Thread 3, Node 0, Opteron 0, Core 3 <-- slave
Rank 2, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
Rank 2, Thread 1, Node 1, Opteron 0, Core 1 <-- slave
Rank 2, Thread 2, Node 1, Opteron 0, Core 2 <-- slave
Rank 2, Thread 3, Node 1, Opteron 0, Core 3 <-- slave
Rank 3, Thread 0, Node 1, Opteron 1, Core 0 <-- MASTER
Rank 3, Thread 1, Node 1, Opteron 1, Core 1 <-- slave
Rank 3, Thread 2, Node 1, Opteron 1, Core 2 <-- slave
Rank 3, Thread 3, Node 1, Opteron 1, Core 3 <-- slave

Go to Menu

Page 69

Running Jobs: Threads –

XT5 Example 3

•

Example 3: Launch 4 MPI tasks, each with 2 threads. Only place 1

MPI task (and
its two threads) on each Opteron. (This requests 2 compute nodes and requires a
size request of 16 even though only 8 cores are actually being used):

export OMP_NUM_THREADS=2
> aprun -n4 -d2 -S1 a.out
Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 1, Thread 0, Node 0, Opteron 1, Core 0 <-- MASTER
Rank 1, Thread 1, Node 0, Opteron 1, Core 1 <-- slave
Rank 2, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
Rank 2, Thread 1, Node 1, Opteron 0, Core 1 <-- slave
Rank 3, Thread 0, Node 1, Opteron 1, Core 0 <-- MASTER
Rank 3, Thread 1, Node 1, Opteron 1, Core 1 <-- slave

Go to Menu

Page 70

Running Jobs: Threads –

XT4 Example 1

•

Example 1: Launch 2 MPI tasks, each with 4 threads (this requests 2 compute nodes
and requires a size request of 8):

export OMP_NUM_THREADS=4
> aprun -n2 -d4 a.out
Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 0, Thread 2, Node 0, Opteron 0, Core 2 <-- slave
Rank 0, Thread 3, Node 0, Opteron 0, Core 3 <-- slave
Rank 1, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
Rank 1, Thread 1, Node 1, Opteron 0, Core 1 <-- slave
Rank 1, Thread 2, Node 1, Opteron 0, Core 2 <-- slave
Rank 1, Thread 3, Node 1, Opteron 0, Core 3 <-- slave

Go to Menu

Page 71

Running Jobs: Threads –

XT4 Example 2

•

Example 2: Launch 2 MPI tasks, each with 2 threads. Place 1 MPI task per Opteron

(this requests 2 compute nodes and requires a size request of 8):

export OMP_NUM_THREADS=4
> aprun -n2 –d2 –S1 a.out
Rank 0, Thread 0, Node 0, Opteron 0, Core 0 <-- MASTER
Rank 0, Thread 1, Node 0, Opteron 0, Core 1 <-- slave
Rank 2, Thread 0, Node 1, Opteron 0, Core 0 <-- MASTER
Rank 2, Thread 1, Node 1, Opteron 0, Core 1 <-- slave

Go to Menu

Page 72

Running Jobs: MPI Task Layout

The default MPI task layout is SMP-style. This means MPI will
sequentially allocate all cores on one node before allocating tasks to
another node.

Changing/Viewing Layout

•

The layout order can be changed using the environment variable
MPICH_RANK_REORDER_METHOD. See man intro_mpi for
more information.

•

Task layout can be seen by setting
MPICH_RANK_REORDER_DISPLAY to 1.

Go to Menu

Page 73

Running Jobs: Single-Processor (Serial) Jobs

•

Serial programs which are memory or computationally intensive should never

be
run on the service nodes (anything outside of aprun).

•

Service nodes have limited resources shared between all users. When they run out
the system problems may result.

•

To run serial programs on the compute nodes, the program must be

compiled with
the compiler wrappers: cc, CC or ftn. You would then need to request one socket
(8 cores) with PBS (#PBS -l size=8).

•

Use the following line to run a serial executable on a compute node:
aprun -n 1 ./a.out

•

Note that on both XT4 and XT5 running a serial job will give you

an access to all
memory of the socket –

8 Gb.
•

Running a serial job on a single core will occupy the whole node, so that the
remaining cores (three cores for XT4 node and seven cores for XT5 node) will be
idling.

•

The following slide shows you how to make use of these idling nodes by running
several copies of serial job on them.

Go to Menu

Page 74

Running Jobs: Running Multiple Single-Processor Programs
The following batch script shows how to run multiple copies of a

serial program on a compute
node:
#!/bin/csh
#PBS -A TG-XXXXXXXXX
#PBS -N run_serial
#PBS -l walltime=00:30:00,size=8
#PBS -j oe
#PBS -V

set echo
cd /lustre/scratch/$USER/serial_job

Use aprun to start a shell script which runs 8 copies of the
of the same executable on a compute node
Note: all aprun options specified below are required
-n 1 # run on a single node
-d 8 # allows the script to access all the memory on the node
-cc none # allows each serial process to run on its own core
-a xt # required by aprun to run a script instead of a program

aprun -n 1 -d 8 -cc none -a xt ./run_serial
Go to Menu

Page 75

Running Jobs: Running Multiple Single-Processor Programs

The run_serial

script looks like this:

#!/bin/sh # This must be /bin/sh (other shells do not
work)

Run 8 copies of serial_code in the background
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &
./serial_code &

Wait until all copies of serial_code have finished wait

Go to Menu

Page 76

Third-Party Software

NCCS has installed many third-party software packages,
libraries, etc., and created module files for them

Third-party applications (e.g., MATLAB, GAMESS)

Latest versions or old versions not supported by
vendor (e.g., fftw/3.1.2)

Suboptimal versions to do proof-of-concept work (e.g.,
blas/ref)

Debug versions (e.g., petsc/2.3.3-debug)

NCCS modules available via module load command,
installed in /sw/xt/ directory

Go to Menu

Page 77

Lustre Filesystem

Go to Menu

Page 78

Lustre Filesystem: A Bigger Picture

Cray XT5:
•

Computation Nodes
–

18670
•

Object Storage Server Nodes
–

168 (100 GB/s)
•

Object Storage Target
–

672 (4.1 PB) [6.2 TB Disk] Go to Menu

Page 79

Lustre Filesystem: Striping on Lustre Filesystem

•

A file is said to be striped when read and write operations access multiple
OST's

concurrently. File striping is a way to increase IO performance

since
writing or reading from multiple OST's

simultaneously increases the
available I/O bandwidth

•

Striping will likely have little impact for the following codes:
–

Serial IO where a single processor or node performs all of the IO for an
application.

–

Multiple nodes perform IO, access files at different times.
–

Multiple nodes perform IO simultaneously to different files that

are small
(each < 100 MB).

•

You can change the striping pattern across the OSTs

on a per directory basis
yourself
–

Default stripe width is 4
•

You should have a good understanding of how and how much your
application outputs before you attempt this!

Go to Menu

Page 80

Lustre Filesystem: Striping on Lustre Filesystem (cont…)

•

You should think of striping as “preparing the ground for I/O.”
–

The striping occurs the next time you write to the directory/file
–

If you change the settings for an existing directory, you will need to copy
the files elsewhere and then copy them back to inherit the new settings

• lfs getstripe filename will tell you the striping information for a file
– lfs find -v <dir/file> is equivalent

• lfs setstripe <dir> size start number
–

Defaults: -s 1M -c 4 –i -1
– lfs setstripe <dir> 0 -1 1 means no striping
–

Caution: You can fill up individual OSTs!
•lfs setstripe
–

Stripe size
–

Stripe count
–

Stripe index

lfs setstripe
–

s (default:1M, k, M, G)
–

c 5 (default 4, -1 All)
–

i 0 (default: -1 round robin)
<file | directory>

Go to Menu

Page 81Page 81

Resources for Users

Go to Menu

Page 82

Resources for Users: Getting Started

•

About Jaguar

http://www.nccs.gov/computing-resources/jaguar/

•

Quad Core AMD Opteron

Processor Overview

http://www.nccs.gov/wp-content/uploads/2008/04/amd_craywkshp_apr2008.pdf

•

PGI Compilers for XT5

http://www.nccs.gov/wp-content/uploads/2008/04/compilers.ppt

•

NCCS Training & Education –

archives of NCCS workshops and seminar series,
HPC/parallel computing references

http://www.nccs.gov/user-support/training-education/

•

2009 Cray XT5 Quad-core Workshop

http://www.nccs.gov/user-support/training-education/workshops/2008-cray-xt5-quad-

core-workshop/

Go to Menu

Page 83

Resources for Users: Advanced Topics

•

Debugging Applications Using TotalView

http://www.nccs.gov/user-support/general-support/software/totalview

•

Using Cray Performance Tools -

CrayPat

http://www.nccs.gov/computing-resources/jaguar/debugging-

 optimization/cray-pat/

•

I/O Tips for Cray XT4

http://www.nccs.gov/computing-resources/jaguar/debugging-optimization/io-

 tips/

•

NCCS Software

http://www.nccs.gov/computing-resources/jaguar/software/
Go to Menu

Page 84

Resources for Users: More Information

•

NCCS website

http://www.nccs.gov/

•

Cray Documentation

http://docs.cray.com/

•

Contact us

help@nccs.gov

Go to Menu

	A Guide to Using �NCCS System
	Outline
	Jaguar System Overview
	Jaguar System Overview: Summary of Resources
	Jaguar System Overview: Summary of Resources
	Jaguar System Overview: System Software
	Jaguar System Overview: System Hardware
	Jaguar System Overview: System Hardware
	Jaguar System Overview: System Hardware
	Jaguar System Overview: System Hardware
	Jaguar System Overview: System Hardware
	Logging into Jaguar
	Logging into Jaguar: Connection Requirements
	Logging into Jaguar: Connection Procedures
	Logging into Jaguar: One-Time Password (OTP) Authentication
	Logging into Jaguar: Connection Options
	Login Nodes �vs. �Compute Nodes
	Login Nodes
	Compute (Batch) Nodes
	File Systems
	File Systems: Basics
	File Systems: User’s Directories
	File Systems: Home Directory
	File Systems: Work Directory
	File Systems: Project Directory
	File Systems: Node-local System
	File Systems: High Performance Storage System (HPSS)
	File Systems: Lustre Filesystem and liblustre
	Software Environment
	Software Environment: Defaults
	Software Environment: Modules
	Software Environment: module command
	Software Environment: module list
	Software Environment: module show pgi
	Compiling
	Compiling: System Compilers
	Compiling: Parallel Compiling on Jaguar
	Compiling: Wrappers and Compiling Tips
	Compiling: Available Compilers (Serial compilers)
	Compiling: Default Compilers
	Compiling: Useful Compiler Flags (PGI)
	Compiling: Useful Compiler Flags (GNU)
	Compiling: Useful Compiler Flags (Pathscale)
	Compiling: Useful Compiler Flags (PGI)
	Compiling: Useful Compiler Flags (GNU)
	Compiling: Useful Compiler Flags (Pathscale)
	Running Jobs
	Running Jobs: Introduction
	Running Jobs: Glossary
	Running Jobs: Batch Scripts
	Running Jobs: Example Batch Script
	Running Jobs: Submitting Batch Jobs - qsub
	Running Jobs: Interactive Batch Jobs
	Running Jobs: PBS Options
	Running Jobs: PBS Options (cont…)
	Running Jobs: PBS Environment Variables
	Running Jobs: Monitoring Job Status - qstat
	Running Jobs: showq, checkjob
	Running Jobs: showstart, showbf, xtshowcabs
	Running Jobs: Job Execution - aprun
	Running Jobs: Job Execution – Service Node
	Running Jobs: Basic aprun options
	Running Jobs: XT5 example
	Running Jobs: XT4 example
	Running Jobs: Memory Affinity
	Running Jobs: Threads
	Running Jobs: Threads – XT5 Example 1
	Running Jobs: Threads – XT5 Example 2
	Running Jobs: Threads – XT5 Example 3
	Running Jobs: Threads – XT4 Example 1
	Running Jobs: Threads – XT4 Example 2
	Running Jobs: MPI Task Layout
	Running Jobs: Single-Processor (Serial) Jobs
	Running Jobs: Running Multiple Single-Processor Programs
	Running Jobs: Running Multiple Single-Processor Programs
	Third-Party Software
	Lustre Filesystem
	Lustre Filesystem: A Bigger Picture
	Lustre Filesystem: Striping on Lustre Filesystem
	Lustre Filesystem: Striping on Lustre Filesystem (cont…)
	Resources for Users
	Resources for Users: Getting Started
	Resources for Users: Advanced Topics
	Resources for Users: More Information

